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Abstract. Electron states in a magnetic quantum ring are investigated. The electron is assumed
to be confined to a plane in the presence of a magnetic field which is zero within the ring a < r < b

and has a constant value B0 outside it. In this way, the perturbation caused by this field distribution
is found to be quite different from that corresponding to a magnetic quantum disk, as regards
electron states and circulating currents. In the case of electron states, the main effect is the splitting
of the corresponding Landau levels into a sort of quasi-miniband around them and modulated by
the inner radius. It is also found that probability current can change its direction depending on the
missing flux quanta, a mechanism that is also governed by the size of the inner radius. Moreover,
when the inner radius approaches zero, the results for a magnetic quantum disk are recovered, as
expected.

1. Introduction

Recent advances in fabrication techniques at micrometric or nanometric scales have made
possible the additional confinement of a two-dimensional electron gas (2DEG) within structures
such as quantum wires and quantum dots, when these structures are subjected to additional
potentials like the presence of a magnetic field. Electron transport behaviour in these structures
is of special interest since current-carrying edge states formed near the boundary play an
important role in resonant tunnelling. An inhomogeneous magnetic field can be obtained in a
variety of magnetic structures, which can be synthesized, for instance, by scanning tunnelling
microscope lithography [1] or by molecular beam epitaxy [2]. We will use the term ‘magnetic
quantum ring’ for those magnetic structures in which the magnetic field in the plane of the
structure has a ring shape.

In usual quantum dots or ring structures, the resonant tunnelling effect gives rise to periodic
Aharonov–Bohm oscillations in the magnetoresistance [3, 4], while in a magnetic quantum
dot the oscillations in magnetoresistance are found to be aperiodic [5].

In the case of a finite magnetic quantum ring, to our knowledge, little attention has been
paid to the characterization of the energy spectrum, its current-carrying states and consequently
its transport properties.

In this preliminary report we study the electron states and circulating probability currents
due to the inhomogeneous field distribution formed in a magnetic quantum ring. The proposed
structure is quite simple—namely, the ring is synthesized by using different materials, which
allow it to create an inhomogeneous distribution of magnetic field when a uniform magnetic
field is applied. Also, the materials used to synthesize the ring are chosen such that the barrier
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potentials in the interfaces can be neglected, forming a magnetic field distribution in which the
field is zero inside the ring a < r < b and has a constant value B0 outside it; here a (b) is its
inner (outer) radius.

In section 2, the exact solution of the Schrödinger equation for this system is found; the
corresponding energy spectrum is calculated as a function of field strength and as a function of
angular momentum. In section 3, an analysis of the circulating probability currents is made.
Finally, in section 4, some conclusions are drawn.

2. The model

Let us assume a magnetic quantum ring of inner (outer) radius a (b) formed by a magnetic
field distribution which is spatially inhomogeneous and is given by

B =




B0êz 0 � r � a

0 a � r � b

B0êz b � r < ∞
(1)

where êz is the unit vector in the z-direction.
The magnetic vector potential associated with this field distribution, which is continuous

everywhere, can be written as

A =




1

2
B0r êϕ 0 � r � a

1

2r
B0a

2êϕ a � r � b

1

2r
B0(r

2 + a2 − b2)êϕ b � r < ∞.

(2)

Notice that ∇ × A = 0 in a � r � b and ∇×A = B0 for regions 0 � r � a and b � r < ∞,
as is required by equation (1), and also that the symmetric choice ∇ · A = 0 holds.

In the effective-mass approximation, neglecting the effect of the spin, the Hamiltonian for
a single charged particle can be written as

H = 1

2m∗

(
p +

q

c
A

)2

(3)

where m∗ is the particle effective mass, q is the absolute value of its charge, p = −ih̄∇ its
momentum and A is given by equation (2). Since ∇ · A = 0, it can be easily seen that for
any state vector� in Hilbert’s space, (p · A)Φ = (A · p)Φ—that is, p and A commute; hence

H = p2

2m∗ +
qAϕ

m∗cr
Lz +

q2

2m∗c2
A2
ϕ (4)

where Aϕ is the ϕ-component of A and Lz = −ih̄ ∂/∂ϕ is the z-component of the angular
momentum. The symmetry of H allows one to see that the total wave function �(r, ϕ) ∼
exp(ilϕ)R(r); here l = 0,±1,±2, . . . is the magnetic quantum number, while R(r) is the
radial wave function whose explicit form depends on the region under consideration. After
separating the corresponding Schrödinger equation, the differential equations for R(r) in the
different regions can be written as{

d2

dr2
+

1

r

d

dr
− l2

r2
− m∗ωc

h̄
l − 1

4

m∗2ω2
c r

2

h̄2 +
2m∗E
h̄2

}
Ri(r) = 0 (5)
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{
d2

dr2
+

1

r

d

dr
− s2

r2
+

2m∗E
h̄2

}
Rr(r) = 0 (6)

{
d2

dr2
+

1

r

d

dr
− t2

r2
− m∗ωc

h̄
t − 1

4

m∗2ω2
c r

2

h̄2 +
2m∗E
h̄2

}
Ro(r) = 0 (7)

where ωc = qB0/m
∗c is the cyclotron frequency,

s = l + m∗ωca
2/2h̄

t = l − m∗ωc(b
2 − a2)/2h̄

and the superscripts (i, r , o) stand for inner, ring and outer regions, respectively. As can be
readily seen, the structures of equations (5) and (7) are similar but there is a shortfall in the
quantum number l for the outer region which depends on the size of the ring, while within it
there is an excess in l which depends only on the inner radius. The latter reflects, qualitatively,
that the missing flux quanta in the outer region are mediated by the creation of flux quanta
in the ring region; therefore, one can expect important consequences for current transport
between outer and inner regions or vice versa; briefly, such a ring structure would constitute
an interesting device for modulating electron transport. We shall return to this point later.

When the changes

u = r2

2!2
m

Ri(u) = B exp(−u/2)ul/2X(u)

v = k
r

!m
Rr(v) = G(v)

w = r2

2!2
m

Ro(w) = D exp(−w/2)wt/2H(w)

(8)

are introduced into equations (5)–(7) (here !m = √
h̄c/qB0 is the magnetic length, k =√

2E/h̄ωc ≡ √
2ε and B, D are normalization constants), the resulting equations allow us to

recognize that

X(u) = 1F1(−α, |l| + 1, u)

G(v) = C1J|s|(kv) + C2Y|s|(kv)
H(w) = U(−β, |t | + 1, w)

(9)

where 1F1 (U ) is the standard (logarithmic) hypergeometric function, J|s| (Y|s|) is the Bessel
function of the first (second) kind and order |s|, C1 and C2 are constants,

α = ε − (|l| + l + 1)/2 β = ε − (|t | + t + 1)/2.

Notice that with these changes, distances are now measured in magnetic lengths, while energies
are measured in units of h̄ωc, both of which depend on field strength.

Now, the energy spectrum of the system can be obtained by requiring the continuity of
Ri , Rr , Ro and their derivatives (or equivalently, of X, G, H and their derivatives), across the
boundaries of the magnetic quantum ring, i.e.,

1

Ri

dRi

dr

∣∣∣∣
r=a

= 1

Rr

dRr

dr

∣∣∣∣
r=a

(10)

1

Rr

dRr

dr

∣∣∣∣
r=b

= 1

Ro

dRo

dr

∣∣∣∣
r=b

. (11)
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These boundary conditions provide an equation whose roots will provide the energy
eigenvalues. This equation is of the form

[f (ua)J|s|(va) − J ′
|s|(va)][g(wb)Y|s|(vb) − Y ′

|s|(vb)]
+ [g(wb)J|s|(vb) − J ′

|s|(vb)][f (ua)Y|s|(va) − Y ′
|s|(va)] = 0 (12)

where

f (ua) = a√
2ε

[
− 1

2
+

|l|
2ua

+ 1F
′
1(−α, |l| + 1, ua)

1F1(−α, |l| + 1, ua)

]

g(wb) = b√
2ε

[
− 1

2
+

|t |
2wb

+
U ′(−β, |t | + 1, wb)

U(−β, |t | + 1, wb)

] (13)

and ua = a2/2!2
m, va = a/

√
2ε!m, vb = b/

√
2ε!m, wb = b2/2!2

m. The primes denote
derivatives of the corresponding functions.

The results of finding the roots of equation (12) are displayed in figure 1 as functions of
field strength, for a ring with sa = a2/2!2

m1
= 3, tb = b2/2!2

m1
= 5 and l = 0,±1,±2 and

±3. Here !m1 ≈ 256.5 Å is the magnetic length at B0 = 1 T. For the sake of clarity, only

Figure 1. The energy spectrum of a magnetic quantum ring (inner radius a, outer radius b), as
a function of field strength. Short-dashed curves correspond to the first root of the eigenvalue
equation while solid lines correspond to Landau levels. Long-dashed curves correspond to the
second root of the eigenvalue equation. In both cases, the uppermost curves are for l > 0 while the
lowermost ones are for l � 0.
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the lowest two roots are shown. As a first result, notice the modulation in the splitting of
the spectrum around the Landau states due to the fact that the number of missing flux quanta
(excess flux quanta), for fixed dimensions of the ring, increases with field strength. The latter
effect is stronger for states with l > 0.

Figure 2 shows the lowest energy level (the first root of equation (12)) as a function of l,
for a ring with tb = 5, different values of sa and a field strength of 2 T. Note the change in sign
of the derivatives of the curves around the value of sa for states with l < 0. The latter effect
becomes less pronounced as |l| increases. When sa approaches zero, the results become those
for a magnetic disk previously reported, as expected. Recalling that the probability currents
∼∂Enl/∂l, as a second result we can say that the inner radius defines the direction of current
circulation for l < 0, while circulation is always anticlockwise for l > 0.

In brief, the above results show a quite different physical behaviour for this structure as
compared with that of a magnetic quantum disk [5].

Figure 2. The energy dependence on the angular momentum for a magnetic quantum ring for
different sizes of the inner radius and B0 = 2 T.

3. The electron current flow

In this section we shall analyse the electron current flow within the ring. To do this we recall
that the total probability current density can be written as

j = j0 + jA (14)
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where

j0 = ih̄

2m∗ (� ∇�∗ − �∗ ∇�)

jA = e

m∗c
A|�|2

(15)

and � is the wave function given by the multiplying exp(ilϕ) by the solution of equ-
ations (5)–(7).

After a simple calculation, the total probability-current-density vector can be found to be

ji = (l + u)
h̄|Ri(u)|2√

2lmm∗u
êϕ

jr = (l + ua)

√
2εh̄|Rr(v)|2
lmm∗v

êϕ

jo = (l + ua − wb + w)
h̄|Ro(w)|2√

2lmm∗w
êϕ

(16)

where ua = a2/2!2
m and wb = b2/2!2

m.
In analysing the behaviour of the probability currents, we restrict ourselves to evaluating

the values in parentheses in equation (16), since the multiplying factors are always greater than
or equal to zero.

Thus, as can be immediately seen, in the states with l � 0 the current flow is always
anticlockwise (in the ‘right direction’), i.e., in the same direction as it would be classically.
However, when l < 0, j can be in either direction, depending on the dimensions of the ring;
i.e., depending on the values of ua and wb. Therefore, when l < 0, the inner radius is that
which in turn determines the direction of current flow. Indeed, three regimes arise from this,
namely: ua < |l|, ua = 0 and ua > |l|.

In the first case (ua < |l|), the currents in the inner region and within the ring region are
always clockwise since (l + u) � (l + ua) < 0, while outside the ring there is a transition
region in which the current changes its direction from clockwise to anticlockwise, at the point
w0 = wb − l − ua = wb + |l| − ua > wb = b2/2!2

m (see figure 3(a)).
In the second case (ua = |l|) the current is always anticlockwise in the outer region since

w − wb � 0 (w � b2/2!2
m = wb), is zero within the ring (ua + l = 0) and is clockwise in the

inner region since u + l = u − ua < 0 (u � a2/2!2
m = ua) (see figure 3(b)).

Finally, in the third case (ua > |l|), the current outside and within the ring is always
anticlockwise since l + ua − wb + w > 0 (ua > |l|, w � wb) and ua − l > 0; however,
in the inner region l + u = −|l| + u can be zero at the point u0 = |l| < ua = a2/2!2

m

and thus the current is clockwise when 0 � u < u0, while it will be anticlockwise when
u0 < u � ua = a2/2!2

m (see figure 3(c)).

4. Conclusions

Electron states in a magnetic quantum ring were investigated in this preliminary report. The
results show a modulation in the level splitting around the corresponding Landau states, a
behaviour which differs substantially from that of a magnetic quantum disk. The probability
currents also show a peculiar behaviour and transition regions where the current can change its
direction were also found. Both effects on energy states and circulating currents are controlled
by the size of the ring’s inner radius. The proposed structure would be an interesting candidate
for experimental characterization similar to that for a Q1D ring [3], in view of the consequences
of its behaviour as regards electron transport. Also, detailed theoretical study of the transport
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Figure 3. Probability currents in a magnetic quantum ring: (a) ua < |l|, (b) ua = |l| and
(c) ua < |l|.

properties of such a structure would constitute an attractive topic since the trends indicate that
it would behave quite differently to its close partners, the magnetic quantum disk [5] and the
one-dimensional quantum ring [3], in the light of the results found for probability currents.

The structure proposed herein could give rise to new optical and transport properties of
nanostructures, e.g. in SEMM [6] (single-electron MOS memory) or magnetic quantum dots
(MQD) [5, 7, 8].
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Finally, we hope that this work will motivate detailed experimental research on this kind
of system to elucidate whether the predicted behaviour can be observed experimentally or not,
since the proposed structure can be fabricated by a technique similar to that used to construct
a magnetic quantum dot [1].

Acknowledgment

This work was supported partially by CONACYT (México) under grants 4055-E9403 and
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